skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sánchez, César"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, Deep Reinforcement Learning (DRL) has emerged as an effective approach to solving real-world tasks. However, despite their successes, DRL-based policies suffer from poor reliability, which limits their deployment in safety-critical domains. Various methods have been put forth to address this issue by providing formal safety guarantees. Two main approaches include shielding and verification. While shielding ensures the safe behavior of the policy by employing an external online component (i.e., a “shield”) that overrides potentially dangerous actions, this approach has a significant computational cost as the shield must be invoked at runtime to validate every decision. On the other hand, verification is an offline process that can identify policies that are unsafe, prior to their deployment, yet, without providing alternative actions when such a policy is deemed unsafe. In this work, we present verification-guided shielding — a novel approach that bridges the DRL reliability gap by integrating these two methods. Our approach combines both formal and probabilistic verification tools to partition the input domain into safe and unsafe regions. In addition, we employ clustering and symbolic representation procedures that compress the unsafe regions into a compact representation. This, in turn, allows to temporarily activate the shield solely in (potentially) unsafe regions, in an efficient manner. Our novel approach allows to significantly reduce runtime overhead while still preserving formal safety guarantees. We extensively evaluate our approach on two benchmarks from the robotic navigation domain, as well as provide an in-depth analysis of its scalability and completeness. 1 
    more » « less
  2. Abstract Runtime verification is a complementary approach to testing, model checking and other static verification techniques to verify software properties. Monitorability characterizes what can be verified (monitored) at run time. Different definitions of monitorability have been given both for trace properties and for hyperproperties (properties defined over sets of traces), but these definitions usually cover only some aspects of what is important when characterizing the notion of monitorability. The first contribution of this paper is a refinement of classic notions of monitorability both for trace properties and hyperproperties, taking into account, among other things, the computability of the monitor. A second contribution of our work is to show that black-box monitoring of HyperLTL (a logic for hyperproperties) is in general unfeasible, and to suggest a gray-box approach in which we combine static and runtime verification. The main idea is to call a static verifier as an oracle at run time allowing, in some cases, to give a final verdict for properties that are considered to be non-monitorable under a black-box approach. Our third contribution is the instantiation of this solution to a privacy property called distributed data minimization which cannot be verified using black-box runtime verification. We use an SMT-based static verifier as an oracle at run time. We have implemented our gray-box approach for monitoring data minimization into the proof-of-concept tool Minion . We describe the tool and apply it to a few case studies to show its feasibility. 
    more » « less